Abstract

Lidar presents a promising solution for bird surveillance in airport environments. However, the low observation refresh rate of Lidar poses challenges for tracking bird targets. To address this problem, we propose a gated recurrent unit (GRU)-based interacting multiple model (IMM) approach for tracking bird targets at low sampling frequencies. The proposed method constructs various GRU-based motion models to extract different motion patterns and to give different predictions of target trajectory in place of traditional target moving models and uses an interacting multiple model mechanism to dynamically select the most suitable GRU-based motion model for trajectory prediction and tracking. In order to fuse the GRU-based motion model and IMM, the approximation state transfer matrix method is proposed to transform the prediction of GRU-based network into an explicit state transfer model, which enables the calculation of the models' probability. The simulation carried out on an open bird trajectory dataset proves that our method outperforms classical tracking methods at low refresh rates with at least 26% improvement in tracking error. The results show that the proposed method is effective for tracking small bird targets based on Lidar systems, as well as for other low-refresh-rate tracking systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call