Abstract
A gastrulation center is described in ascidian eggs. Extensive cytoplasmic rearrangements occur in ascidian eggs between fertilization and first cleavage. During ooplasmic segregation, a specific cytoskeletal domain (the myoplasm) is translocated first to the vegetal pole (VP) and then to the posterior region of the zygote. A few hours later, gastrulation is initiated by invagination of endoderm cells in the VP region of the 110-cell embryo. After the completion of gastrulation, the embryonic axis is formed, which includes induction of the nervous system, morphogenesis of the larval tail and differentiation of tail muscle cells. Microsurgical deletion or ultraviolet (UV) irradiation of the VP region during the first phase of myoplasmic segregation prevents gastrulation, nervous system induction and tail formation, without affecting muscle cell differentiation. Similar manipulations of unfertilized eggs or uncleaved zygotes after the second phase of segregation have no effect on development, suggesting that a gastrulation center is established by transient localization of myoplasm in the VP region. The function of the gastrulation center was investigated by comparing protein synthesis in normal and UV-irradiated embryos. About 5% of 433 labelled polypeptides detected in 2D gels were affected by UV irradiation. The most prominent protein is a 30 kDa cytoskeletal component (p30), whose synthesis is abolished by UV irradiation. p30 synthesis peaks during gastrulation, is affected by the same UV dose and has the same UV-sensitivity period as gastrulation. However, p30 is not a UV-sensitive target because it is absent during ooplasmic segregation, the UV-sensitivity period. Moreover, the UV target has the absorption maximum of a nucleic acid rather than a protein. Cell-free translation studies indicate that p30 is encoded by a maternal mRNA. UV irradiation inhibits the ability of this transcript to direct p30 synthesis, indicating that p30 mRNA is a UV-sensitive target. The gasturlation center may function by sequestration or activation of maternal mRNAs encoding proteins that function during embryogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.