Abstract

This work presents a kinetic wall boundary model for diatomic gas molecules. The model is derived by generalizing the Cercignani-Lampis-Lord gas-surface interaction kernel in order to account for the gas internal degrees of freedom. Here, opposed to the extensions by Lord [“Some extensions to the Cercignani-Lampis gas-surface scattering kernel,” Phys. Fluids 3, 706–710 (1991)], energy exchange between different molecular modes is honored and thus, different physical phenomena arising from inelastic gas–surface collisions can be described. For practical implementations of the model, a Monte–Carlo algorithm was devised, which significantly reduces the computational cost associated with sampling. Comparisons of model predictions with experimental and molecular dynamics data exhibit good agreement. Moreover, simulation studies are performed to demonstrate how energy transfers between different modes due to wall collisions can be exploited for gas separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.