Abstract
The discrete velocity method (DVM) for rarefied flows and the unified methods (based on the DVM framework) for flows in all regimes, from continuum one to free molecular one, have worked well as precise flow solvers over the past decades and have been successfully extended to other important physical fields. Both DVM and unified methods endeavor to model the gas-gas interaction physically. However, for the gas-surface interaction (GSI) at the wall boundary, they have only use the full accommodation boundary up to now, which can be viewed as a rough Maxwell boundary with a fixed accommodation coefficient (AC) at unity, deviating from the real value. For example, the AC for metal materials typically falls in the range of 0.8 to 0.9. To overcome this bottleneck and extend the DVM and unified methods to more physical boundary conditions, an algorithm for Maxwell boundary with an adjustable AC is established into the DVM framework. The Maxwell boundary model splits the distribution of the bounce-back molecules into specular ones and Maxwellian (normal) ones. Since the bounce-back molecules after the spectral reflection does not math with the discrete velocity space (DVS), both macroscopic conservation (from numerical quadrature) and microscopic consistency in the DVS are hard to achieve in the DVM framework. In this work, this problem is addressed by employing a combination of interpolation methods for mismatch points in DVS and an efficient numerical error correction method for micro-macro consistency. On the other hand, the current Maxwell boundary for DVM takes the generality into consideration, accommodating both the recently developed efficient unstructured velocity space and the traditional Cartesian velocity space. Moreover, the proposed algorithm allows for calculations of both monatomic gases and diatomic gases with internal degrees in DVS. Finally, by being integrated with the unified gas-kinetic scheme within the DVM framework, the performance of the present GSI algorithm is validated through a series of benchmark numerical tests across a wide range of Knudsen numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.