Abstract

The development of butyl acetate sensors with high sensitivity and selectivity has been highly desirable for its harmful effects on human health. In this work, we developed a high-performance butyl acetate sensor based on vascular bundle structure Zn2 SnO4 nanomaterial derived from maize straw. The vascular bundle structure Zn2 SnO4 with higher specific surface area obtained by calcination to remove the maize straw template, plays the dual role of accelerating the diffusion of gas molecules and providing more active sites. Our research showed that the sensor had a response of 18 to 100 ppm butyl acetate at a working temperature of 250 °C, with a fast response recovery rate (18 s/25 s), which showed significant improvement compared to the Zn2 SnO4 sensor prepared without templates. The improved performance can be attributed to the cross-linked nanoparticle chains and gas collision mechanism of the sensor. These findings highlight the potential of our sensor for the detection of butyl acetate gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.