Abstract
A new hybrid actuated soft finger with active variable stiffness is proposed for the first time by integrating gas-driven and ribbon-driven mechanisms. By carefully coordinating the two mechanisms, the bending deformation and the stiffness modulation processes of the soft finger can be uncoupled, providing it with both high flexibility and good variable stiffness. Although the soft finger, made entirely from flexible materials, works under a low and safe gas pressure of below 35 kPa, the maximum bending angle reaches ∼210°, and a single soft finger can withstand a weight of 1.25 kg. For any bending angle, with the help of the ribbon-driven mechanism, the stiffness of the soft finger can increase by three to six times. In addition, theoretical models are established for the evaluation of the bending-deformation characteristic and the output force of the soft finger, which are verified by experiments. A dual-finger soft robotic gripper is assembled by utilizing two soft fingers, which can easily and stably grab various objects with different sizes, shapes, and weights. Both the theoretical and experimental results indicate that the proposed gas-ribbon-hybrid actuated mechanism can effectively enhance the variable stiffness property of a soft finger while retaining its good compliance with the surroundings. This work might provide future insights for the development of compact and cost-effective soft end effectors with active variable stiffness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.