Abstract
As optical reporting elements, fluorescent proteins are extensively used in whole-cell microbial biosensors. However, the use of these optical reporters is limited in opaque media such as soil. This study described a method utilizing gas as a reporting signal that could be used for the rapid on-site detection of mercury in soil. In this biosensor, the MerR protein could capture mercury ions and then bind the promoter of the efe gene to initiate the synthesis of the ethylene (C2H4)-forming enzyme that produced the gas. The research showed that the mercury ion concentrations could be converted into C2H4 gas signals, which were quantified using a handheld C2H4 sensor. By optimizing the biosensor to improve its anti-interference ability in the system, it could detect mercury ion concentrations in the soil ranging from 0.2 to 20 mg/kg within 45 min, effectively reflecting whether the mercury pollution in the soil exceeded the limit standard. This study provides a simple, inexpensive, and portable method for the on-site detection of soil pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.