Abstract
One of the fundamental processes in nature, the oxidation of water, is catalyzed by a small CaMn3 O4 ⋅MnO cluster located in photosystem II (PS II). Now, the first successful preparation of a series of isolated ligand-free tetrameric Can Mn4-n O4+ (n=0-4) cluster ions is reported, which are employed as structural models for the catalytically active site of PS II. Gas-phase reactivity experiments with D2 O and H218 O in an ion trap reveal the facile deprotonation of multiple water molecules via hydroxylation of the cluster oxo bridges for all investigated clusters. However, only the mono-calcium cluster CaMn3 O4+ is observed to oxidize water via elimination of hydrogen peroxide. First-principles density functional theory (DFT) calculations elucidate mechanistic details of the deprotonation and oxidation reactions mediated by CaMn3 O4+ as well as the role of calcium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.