Abstract

This work presents a gas-liquid sensor based on chalcogenide etched-tapered fiber (ETF) functionalized with graphene oxide film. Unlike the preparation of conventional tapered fiber sensors, the core diameter of the optical fiber of this gas-liquid sensor was kept constant, and part of its cladding was removed via the chemical corrosion method that the fiber optic modes were the invariant. The energy distribution of transmission mode in the original fiber and tapered fiber is simulated respectively, and obtained the conclusion that the tapered fiber structure has higher sensing sensitivity. The sensors could detect VOCs such as formaldehyde (HCOH) and butane (C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> ) in the mid-infrared band. Results showed that the ETF sensor had a high detection sensitivity of both HCOH solution (2.6731 a.u./mg·mL <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−1</sup> ) and C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sub> gas (0.2773 a.u./vol.%). A layer of graphene oxide (GO) film was coated on the ETF to further improve the sensitivity of the sensor. The GO coated etched-tapered fiber (GO-ETF) sensor’ sensitivity was substantially improved owing to the strong hydrophilicity and biocompatibility of GO which can absorb bioactive molecules. The high detection sensitivity of both solution and gas were 4.5091 a.u./mg·mL <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−1</sup> and 0.4812 a.u./vol.%, respectively, which were 1.69 and 1.74 times higher than that of the sensor without a coating of GO film. The results further showed that the sensor had a rapid response speed, low detection limit, good repeatability, and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.