Abstract

Clozapine is a second generation antipsychotic drug that has proven to be helpful in the management of patients with psychotic disorders that are resistant to other medications. Unfortunately, the majority of patients treated with clozapine develop metabolic dysregulation, including weight gain and insulin resistance. There are few treatments available to effectively counter these side-effects. The goal of the present study was to use an established animal model to better understand the nature of these metabolic side-effects and determine whether existing drugs could be used to alleviate metabolic changes. Adult female rats were treated with a range of doses of clozapine (2, 10 and 20 mg/kg) and subjected to the hyperinsulinemic-euglycemic clamp, to measure whole-body insulin resistance. Clozapine dose-dependently decreased the glucose infusion rate, reflecting pronounced insulin resistance. To reverse the insulin resistance, rats were co-treated with the ganglionic blocker mecamylamine (0.1, 1.0 and 5.0 mg/kg) which dose-dependently reversed the effects of 10 mg/kg clozapine. A 1.0 mg/kg dose of mecamylamine independently reversed the large increase in peripheral epinephrine caused by treatment with clozapine. To study the influence of specific adrenoceptors, rats were treated with multiple doses of α1 (prazosin), α2 (idazoxan), β1 (atenolol) and β2 (butoxamine) adrenoceptor antagonists after the onset of clozapine-induced insulin resistance. Both beta blockers were effective in attenuating the effects of clozapine, while idazoxan had a smaller effect; no change was seen with prazosin. The current results indicate that peripheral catecholamines may play a role in clozapine’s metabolic effects and be a target for future treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.