Abstract

This paper presents an application of noncooperative game theory to generation expansion planning (GEP) in a competitive electricity industry. The authors apply the Cournot model of oligopoly behavior to formulate a GEP model that may characterize expansion planning in a competitive regime, particularly in pool-dominated generation supply industries. Numerical experiments are conducted on a test system to analyze generation investment and market participation decisions of candidate expansion units that vary in costs and forced outage rates. The numerical results point to: (1) greater industry expansion and system reliability, under Cournot competition than under centralized expansion planning; and (2) higher probabilistic measures of reliability from multi-player expansion than from expansion by a traditional monopolist with an equivalent reserve margin requirement. Furthermore, the authors summarize analytical results involving a simplified version of the GEP game.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.