Abstract

We address the problem of Electric Vehicle (EV) drivers’ assistance through Intelligent Transportation System (ITS). Drivers of EVs that are low in battery may ask a navigation service for advice on which charging station to use and which route to take. A rational driver will follow the received advice, provided there is no better choice i.e., in game-theory terms, if such advice corresponds to a Nash-equilibrium strategy. Thus, we model the problem as a game: first we propose a congestion game, then a game with congestion-averse utilities, both admitting at least one pure-strategy Nash equilibrium. The former represents a practical scenario with a high level of realism, although at a high computational price. The latter neglects some features of the real-world scenario but it exhibits very low complexity, and is shown to provide results that, on average, differ by 16% from those obtained with the former approach. Furthermore, when drivers value the trip time most, the average per-EV performance yielded by the Nash equilibria and the one attained by solving a centralized optimization problem that minimizes the EV trip time differ by 15% at most. This is an important result, as minimizing this quantity implies reduced road traffic congestion and energy consumption, as well as higher user satisfaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.