Abstract

PurposeThe paper aims to build the connections between game theory and the resource allocation problem with general uncertainty. It proposes modeling the distributed resource allocation problem by Bayesian game. During this paper, three basic kinds of uncertainties are discussed. Therefore, the purpose of this paper is to build the connections between game theory and the resource allocation problem with general uncertainty.Design/methodology/approachIn this paper, the Bayesian game is proposed for modeling the resource allocation problem with uncertainty. The basic game theoretical model contains three parts: agents, utility function, and decision-making process. Therefore, the probabilistic weighted Shapley value (WSV) is applied to design the utility function of the agents. For achieving the Bayesian Nash equilibrium point, the rational learning method is introduced for optimizing the decision-making process of the agents.FindingsThe paper provides empirical insights about how the game theoretical model deals with the resource allocation problem uncertainty. A probabilistic WSV function was proposed to design the utility function of agents. Moreover, the rational learning was used to optimize the decision-making process of agents for achieving Bayesian Nash equilibrium point. By comparing with the models with full information, the simulation results illustrated the effectiveness of the Bayesian game theoretical methods for the resource allocation problem under uncertainty.Originality/valueThis paper designs a Bayesian theoretical model for the resource allocation problem under uncertainty. The relationships between the Bayesian game and the resource allocation problem are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call