Abstract

Distributed opportunistic scheduling (DOS) is inherently more difficult than conventional opportunistic scheduling due to the absence of a central entity that knows the channel state of all stations. With DOS, stations use random access to contend for the channel and, upon winning a contention, they measure the channel conditions. After measuring the channel conditions, a station only transmits if the channel quality is good; otherwise, it gives up the transmission opportunity. The distributed nature of DOS makes it vulnerable to selfish users: By deviating from the protocol and using more transmission opportunities, a selfish user can gain a greater share of wireless resources at the expense of well-behaved users. In this paper, we address the problem of selfishness in DOS from a game-theoretic standpoint. We propose an algorithm that satisfies the following properties: 1) When all stations implement the algorithm, the wireless network is driven to the optimal point of operation; and 2) one or more selfish stations cannot obtain any gain by deviating from the algorithm. The key idea of the algorithm is to react to a selfish station by using a more aggressive configuration that (indirectly) punishes this station. We build on multivariable control theory to design a mechanism for punishment that is sufficiently severe to prevent selfish behavior, yet not so severe as to render the system unstable. We conduct a game-theoretic analysis based on repeated games to show the algorithm's effectiveness against selfish stations. These results are confirmed by extensive simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.