Abstract

Goal-oriented requirements engineering aims to capture desired goals and strategies of relevant stakeholders during early requirements engineering stages, using goal models. Goal-oriented modeling techniques support the analysis of system requirements (especially non-functional ones) from an operationalization perspective, through the evaluation of alternative design options. However, conflicts and undesirable interactions between requirements produced from goals are inevitable, especially as stakeholders often aim for different objectives. In this paper, we propose an approach based on game theory and the Goal-oriented Requirement Language (GRL) to reconcile interacting stakeholders (captured as GRL actors), leading to reasonable trade-offs. This approach consists in building a payoff bimatrix that considers all actor’s valid GRL strategies, and computing its Nash equilibrium. Furthermore, we use two optimization techniques to reduce the size of the payoff bimatrix, hence reducing the computational cost of the Nash equilibrium. The approach goes beyond existing work by supporting nonzero-sum games, multiple alternatives, and inter-actor dependencies. We demonstrate the applicability of our game-theoretic modeling and analysis approach using a running example and two GRL models from the literature, with positive results on feasibility and applicability, including performance results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call