Abstract

Photocatalytic hydrogen production from water splitting has received considerable attention in recent years. The bottle-neck issue for hydrogen production efficiency is the relative slow charge separation and efficient hydrogen evolution. Currently, the major strategy for developing catalysts is to anchor small noble-metal cocatalysts onto relatively large photocatalysts. In this study, extremely small photocatalysts of TiO2 quantum dots were loaded onto the low-cost micro-sized cocatalysts of porous NiO/NiS2 nanosheets, promoting the rapid charge separation of photogenerated electrons from small-sized photocatalysts to large-sized cocatalysts. The size of cocatalysts is three orders of magnitude larger than that of photocatalysts. The hydrogen production of designed catalysts is ∼ 16 times higher than that of pure TiO2 photocatalysts, clearly demonstrating the critical role of large-sized porous cocatalysts. Our game-changing strategy provides a distinctive approach to design new kinds of photocatalysts with rapid charge separation and highly efficient hydrogen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.