Abstract
Channel allocation was extensively investigated in the framework of cellular networks, but it was rarely studied in the wireless ad-hoc networks, especially in the multi-hop ad-hoc networks. In this paper, we study the competitive multi-radio channel allocation problem in multi-hop wireless networks in detail. We model the channel allocation problem as a static cooperative game, in which some players collaborate to achieve high date rate. We propose the min-max coalition-proof Nash equilibrium (MMCPNE) channel allocation scheme in the game, which is aiming to max the achieved date rates of communication links. We study the existence of MMCPNE and prove the necessary conditions for MMCPNE. Furthermore, we propose several algorithms that enable the selfish players to converge to MMCPNE. Simulation results show that MMCPNE outperforms CPNE and NE schemes in terms of achieved data rates of the multi-hop links due to cooperation gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.