Abstract
Abstract The paper introduces a Galerkin method in the reproducing kernel Hilbert space. It is implemented as a meshless method based on spatial trial spaces spanned by the Newton basis functions in the “native” Hilbert space of the reproducing kernel. For the time-dependent PDEs it leads to a system of ordinary differential equations. The method is used for solving the 2D nonlinear coupled Burgers' equations having Dirichlet and mixed boundary conditions. The numerical solutions for different values of Reynolds number (Re) are compared with analytical solutions as well as other numerical methods. It is shown that the proposed method is efficient, accurate and stable for flow with reasonably high Re in the case of Dirichlet boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.