Abstract
A galactoside-based polyacrylate hydrogel was used as a scaffold to immobilize antibodies for the development of a sandwich immunoassay to detect cholera toxin (CT) and staphylococcal enterotoxin B (SEB). The hydrogel possesses large pores and simulates a solution-like environment allowing easy penetration of large biomolecules. Highly crosslinked hydrogels containing pendant amine or carboxyl functionalities were polymerized through a free-radical polymerization process. Covalent crosslinking of the antibodies on hydrogel films was accomplished using a homobifunctional crosslinker or carbodiimide chemistry. Utilizing the two different crosslinking methodologies, our results demonstrated the effectiveness of repetitive additions of crosslinker reactant into a single location on the gel surface. This approach in fact increased the amount of immobilized antibody. Patterned arrays of the immobilized antibodies for sandwich immunoassay development were achieved using a PDMS template containing micro-channels. This template provided a suitable means for applying reagents in multiple cycles. Fluorescence and three-dimensional (3D) imaging by confocal microscopy and laser scanning confocal microscopy of Cy3-labeled anti-CT and/or Cy3-anti-SEB tracer molecules provided qualitative and quantitative measurements on the efficiency of protein immobilization, detection sensitivity and signal-to-noise ratios. As a result of using the galactose polyacrylate-base hydrogel as a platform for immunoassay development, we have successfully been able to achieve low limits of detection for SEB and cholera toxins (1.0 ng mL −1). Repetitive additions (>3 cycles) of the crosslinker and antibody have also shown a dramatic increase in the immobilization of antibody resulting in improved immunoassay sensitivity. Fluorescence signal-to-noise ratios using the hydrogel-based immunoassays have been observed as high a 40:1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.