Abstract

New classes of physiologically responsive magnetic resonance (MR) contrast agents are being developed that are activated by enzymes, secondary messengers, pH, and temperature. To this end, we have prepared a new class of enzyme-activated MR contrast agents using a self-immolative mechanism and investigated the properties of these agents using novel in vitro assays. We have synthesized in nine steps a Gd(III) agent 1 that is activated by the oncologically significant beta-glucuronidase. 1 consists of Gd(III)DO3A (DO3A = 1,4,7-tricarboxymethylene-1,4,7,10-tetraazacyclododecane) bearing a pendant beta-glucuronic acid moiety connected by a self-immolative linker to the macrocycle. LC-MS analysis reveals that 1 is enzymatically processed as predicted by bovine liver beta-glucuronidase, generating 2-aminoethylGdDO3A, 2. Compound 2 was prepared independently in a four-step synthetic procedure. Complex 1 displays a decrease in relaxivity upon titration with bicarbonate anion. The relaxivity increases when 1 is converted to 2 in a buffer mimicking in vivo anion concentrations (Parker, D. In Crown Compounds: Towards Future Applications; Cooper, S. R., Ed.; VCH: New York, 1992; pp 51-67) by 17%, while the relaxivity decreases by 27% for the same experiment in human blood serum. Hydrolytic kinetics catalyzed by bovine liver beta-glucuronidase at interstitial pH = 7.4 fit the Michaelis-Menten model with k cat/Km = 74.9 +/- 10.9 M(-1) s(-1). Monitoring of bulk water proton T1 during incubation with enzyme shows an increase in T1 that mirrors results obtained through the relaxivity measurements of compounds 1 and 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call