Abstract
Optical Character Recognition is one of the most interesting and highly motivated areas of research, which has been very much ap-preciated in different aspect to the area of digitations world. Here in this paper we have suggested a probabilistic approach for develop-ing recognition system for handwritten Odia numerals. To report a good level of recognition of Odia scripts is quite challenging with respect to other Indian scripts .All the procedure are sequentially enclosed to develop an recognition model and report a successful recognition accuracy. Here we have performed the analysis over to standard handwritten numeral database named as IITBBS Odia Numeral Database, which is collected from IIT Bhubaneswar. In the suggestive recognition system we have adopted a 2D-Gabor wavelet transformation approach for selection of feature vector. Apart from it we have also noted down the dimensional reduction to the obtained feature vector by sustaining to PCA. In order to predict high recognition rate we have followed up by RBF Neural Network classifier. In addition to it we have also evaluate different version of RBF like Gaussian and Polynomial. Performing over 400 samples each of 10 categories (400*10) number of Odia numeral images, we have maintained a well-defined training and testing ratio in the clas-sifier and achieved 98.02%, 96.8%.recognition rate for the reported classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.