Abstract
Feature selection plays a key role in reducing the dimensionality of a feature vector by discarding redundant and irrelevant ones. In this paper, a Genetic Algorithm-based hierarchical feature selection (HFS) model has been designed to optimize the local and global features extracted from each of the handwritten word images under consideration. In this context, two recently developed feature descriptors based on shape and texture of the word images have been taken into account. Experimentation is conducted on an in-house dataset of 12,000 handwritten word samples written in Bangla script. This database comprises names of 80 popular cities of West Bengal, a state of India. Proposed model not only reduces the feature dimension by nearly 28%, but also enhances the performance of the handwritten word recognition (HWR) technique by 1.28% over the recognition performance obtained with unreduced feature set. Moreover, the proposed HFS-based HWR system performs better in comparison with some recently developed methods on the present dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.