Abstract
In the past, with vertically integrate utilities, Optimal Reactive Power Flow (ORPF) procedures were designed to minimize power system losses, keeping the voltage profile in an acceptable range. Nowadays, in the market environment, a new formulation of the ORPF, aimed at the system security maximization, is necessary. In particular, as congestions and overloads are usually taken into account by the energy market rules, voltage security could become the main goal of ORPFs. Voltage problems are caused by the increase in power transfer among areas of interconnected systems, by the lack of reactive power support and by the increasing limitations of transmission networks. In this paper, an analysis of several ORPF Objective Functions (OFs) is reported, where the goal considered is the network security maximization. To solve the optimization problem for the considered OFs, a Genetic Algorithm (GA) approach has been adopted, together with a particular formulation of the Power Flow (PF) taking into account the Secondary Voltage Regulation (SVR). Tests are performed on a detailed model of the Italian power system, comparing the results in terms of system losses, reactive power required, loadability limits and voltage collapse indices. Furthermore, the improvements achievable with the adoption of the SVR in the new market environment have been investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.