Abstract
Classification is one of the most widely used remote sensing analysis techniques, with the maximum likelihood classification (MLC) method being a major tool for classifying pixels from an image. Fuzzy topology, in which the set concept is generalized from two values, {0, 1}, to the values of a continuous interval, [0, 1], is a generalization of ordinary topology and is used to solve many GIS problems, such as spatial information management and analysis. Fuzzy topology is induced by traditional thresholding and as such gives a decomposition of MLC classes. Presented in this paper is an image classification modification, by which induced threshold fuzzy topology is integrated into the MLC method (FTMLC). Hence, by using the induced threshold fuzzy topology, each image class in spectral space can be decomposed into three parts: an interior, a boundary and an exterior. The connection theory in induced fuzzy topology enables the boundary to be combined with the interior. That is, a new classification method is derived by integrating the induced fuzzy topology and the MLC method. As a result, fuzzy boundary pixels, which contain many misclassified and over-classified pixels, are able to be re-classified, providing improved classification accuracy. This classification is a significantly improved pixel classification method, and hence provides improved classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.