Abstract

In the light of growing global competition, organizations around the world today are constantly under pressure to produce high-quality products at an economical price. The integration of design and manufacturing activities into one common engineering effort has been recognized as a key strategy for survival and growth. Design for manufacturability (DFM) is an approach to design that fosters the simultaneous involvement of product design and process design. The implementation of the DFM approach requires the collaboration of both the design and manufacturing functions within an organization. At present, For some reasons DFM approach is ineffectively including lack of interdisciplinary expertise of designers; inflexibility in organizational structure, which hinders interaction between design and manufacturing functions. Design for manufacture is the practice of designing products with manufacturing in mind. Early consideration of manufacturing issues can shorten product development cycle time, minimi overall development cost and ensure a smooth transition into production. In this paper, part manufacturability under Concurrent Engineering (CE) environment was analyzed in detail. An evaluation system of DFM was proposed according to CE ideas. A fuzzy set-based manufacturability evaluation algorithm is formulated to generate relative manufacturability indices to provide product designers with a better understanding of the relative ease or difficulty of machining the features in their designs. An analytic hierarchy process (AHP) method is introduced to assign weighting factors to features to reflect their functional importance. Results from the case studies show the method available and practicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.