Abstract

Mitotic counts are widely used as a metric for cellular proliferation for prognosis and to determine the aggressiveness of individual cancers. This study presents a less labor-intensive method to count mitotic cells in breast cell sections. The proposed algorithm involves two phases: candidate segmentation and detection. During candidate segmentation, images are filtered through a blue ratio threshold to remove unnecessary background information and to increase the color difference between targets and non-targets for an entire digitized image. A fuzzy candidate segmentation method is used to adaptively determine threshold values in order to dichotomize gray-level images and distinguish the images of mitotic candidates from the background. The thresholding scheme integrates the spatial characteristics’ distribution in a histogram to determine an intensity threshold for the processed image, in order to filter insignificant information. During the detection phase, a two-class classification uses an attention mechanism that is realized by a set of fully connected neural networks, instead of convolutional layers, which decreases the computational cost. The validation test using ICPR2012 competition datasets shows that the proposed model outperforms current state-of-art techniques, in terms of the metrics, Accuracy, F1-score, and Precision and Recall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.