Abstract
Most fuzzy rule-based image segmentation techniques to date have been primarily developed for gray level images. In this paper, a new algorithm called fuzzy rule-based colour image segmentation (FRCIS) is proposed by extending the generic fuzzy rule-based image segmentation (GFFUS) algorithm G.C. Karmakar, L.S. Dooley [2002] and integrating a novel algorithm for averaging hue angles. Qualitative and quantitative analysis of the performance of FRCIS is examined and contrasted with the popular fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms for both the hue-saturation-value (HSV) and RGB colour models. Overall, FRCIS provides considerable improvement for many different image types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.