Abstract

We propose a fuzzy random survival forest (FRSF) to model lapse rates in a life insurance portfolio containing imprecise or incomplete data such as missing, outlier, or noisy values. Following the random forest methodology, the FRSF is proposed as a new machine learning technique for solving time-to-event data using an ensemble of multiple fuzzy survival trees. In the learning process, the combination of methods such as the c-index, fuzzy sets theory, and the ensemble of multiple trees enable the automatic handling of imprecise data. We analyse the results of several experiments and test them statistically; they show the FRSF’s robustness, verifying that its generalisation capacity is not reduced when modelling imprecise data. Furthermore, the results obtained using a real portfolio of a life insurance company demonstrate that the FRSF has a better performance in comparison with other state-of-the-art algorithms such as the traditional Cox model and other tree-based machine learning techniques such as the random survival forest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.