Abstract
In this paper, an effective strategy for fault detection of sludge volume index (SVI) sensor is proposed and tested on an experimental hardware setup in waste water treatment process (WWTP). The main objective of this fault detection strategy is to design a system which consists of the online sensors, the SVI predicting plant and fault diagnosis method. The SVI predicting plant is designed utilizing a fuzzy neural network (FNN), which is trained by a historical set of data collected during fault-free operation of WWTP. The fault diagnosis method, based on the difference between the measured concentration values and FNN predictions, allows a quick revealing of the faults. Then this proposed fault detection method is applied to a real WWTP and compared with other approaches. Experimental results show that the proposed fault detection strategy can obtain the fault signals of the SVI sensor online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.