Abstract

This paper addresses the problem of predicting demand for natural gas for the purpose of realizing energy cost savings. Daily monitoring of a rooftop unit wireless sensor system provided feedback for a decision support system that supplied the demand for the required number of million cubic feet of natural gas used to control heating, ventilation, and air conditioning systems. The system was modeled with artificial neural networks (ANNs). Data on the consumption of the system were collected for 111days beginning September 21, 2012. The input/output data were used to train the ANN. The ANN approximated the data very well, showing that it can be used to predict demand for natural gas. A fuzzy nearest neighbor neural network statistical model consisting of four components was used. The predictive models were implemented by comparing regression, fuzzy logic, nearest neighbor, and neural networks. In addition, to optimize natural gas demand, we used the fuzzy regression nearest neighbor ANN model cost function to investigate the variables of price, operating expenses, cost to drill new wells, cost to turn gas on, oil price and royalties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.