Abstract

One important problem in autonomous robot navigation is the effective following of an unknown path traced in the environment in compliance with the kinematic limits of the vehicle, i.e., bounded linear and angular velocities and accelerations. In this case, the motion planning must be implemented in real-time and must be robust with respect to the geometric characteristics of the unknown path, namely curvature and sharpness. To achieve good tracking capability, this paper proposes a path following approach based on a fuzzy-logic set of rules which emulates the human driving behavior. The input to the fuzzy system is represented by approximate information concerning the next bend ahead the vehicle; the corresponding output is the cruise velocity that the vehicle needs to attain in order to safely drive on the path. To validate the proposed algorithm two completely different experiments have been run: in the first experiment, the vehicle has to perform a lane-following task acquiring lane information in real-time using an onboard camera; in the second, the motion of the vehicle is obtained assigning in real-time a given time law. The obtained results show the effectiveness of the proposed method

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.