Abstract

Here, a modified particle swarm optimisation (MPSO) algorithm with varying swarm size for constrained optimisation problem is proposed. In this MPSO, a life time is assigned to each particle at the time of generation depending on its fitness. After completion of a generation, if no movement is made by the particle, its age is increased by unity. When age of a particle exceeds the lifetime, it is discarded from the swarm. Diversity in the swarm is maintained using information entropy theory. A fuzzy possibility/necessity-based fitness evolution is proposed to deal with fuzzy optimisation problems using this MPSO. Efficiency of the algorithm is tested against a list of crisp valued standard benchmark nonlinear test functions. This algorithm is used to solve a production inventory model with fuzzy costs, where lifetime of the product is random in nature. At the beginning of planning horizon price discount is offered to the customers for few cycles to boost the demand. Demand also depends on stock and selling price. The model is illustrated with numerical examples and some sensitivity analyses have been made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.