Abstract

Based on kernel principal component analysis, fuzzy set theory, and maximum margin criterion, a novel image feature extraction and recognition method, called fuzzy kernel maximum margin criterion (FKMMC), is proposed. In the proposed method, two new fuzzy scatter matrixes are redefined. The new fuzzy scatter matrix can reflect fully the relation between fuzzy membership degree and the offset of the training sample to subclass center. Besides, a concise reliable computational method of the fuzzy between-class scatter matrix is provided. Experimental results on four face databases (AR, extended Yale B, GTFD, and FERET) demonstrate that the proposed method outperforms other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.