Abstract

Abstract Groundwater is a vital resource for human consumption, particularly in rural areas with limited access to treated water. The conventional Water Quality Index models used for this purpose have limitations related to data volatility and judgment uncertainties. To overcome these limitations, our study introduces a novel approach that employs a Fuzzy Inference System to determine the Water Quality Index. The dataset used in our research includes multiple parameters such as pH, EC, TDS, Ca, Mg, Na, K, HCO3, Cl, SO4, TH, DWQI, and other physio-chemical and chemical parameters. Our approach utilizes linguistic variables, fuzzy rules, and the hyperbolic tangent set function to handle imprecise and uncertain water quality data. By employing Fuzzy C-Means clustering, we group similar water samples based on quality parameters and map membership values to linguistic terms representing water quality categories. Suitable defuzzification methods are then applied to convert fuzzy outputs into precise results. This proposed approach provides a comprehensive framework for accurate water quality assessment, enabling informed decision-making and more reliable and precise evaluations of groundwater quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.