Abstract
Schlieren imaging in wind-tunnels is extensively utilized to study the effects of air on a moving object. One of the interested subjects for research is to study the effects of speed change on the object surface. Speed change results in the occurrence of shock waves, which are visualized as lines on Schlieren images. However, computing new relevant velocity of the wind-tunnel requires solving sophisticated and time-consuming formulas. In this paper, we investigate the problem of estimating relevant speed of the object after occurrence of a shock wave. At first, we propose a feature set of the image that are influenced by the shock wave. Therefore, these features are extracted by the developed image processing component. Afterward, we propose a fuzzy genetic algorithm to estimate the new velocity of the object. We make use of the genetic algorithm to tune the membership functions of the variables of the fuzzy system by leveraging some training images. The evaluation is performed by computing the accuracy of the velocity estimation. For this, the proposed fuzzy system runs by the extracted features of these images and estimates the new velocity. The comparison of the estimated with the real values shows a very close and accurate estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.