Abstract

At present, hopping probe ion conductance microscopy (HPICM) is the most capable ion conductance microscopy for imaging complex surface topography. However, the HPICM controller usually does not begin to stop the pipette sample approach until the ion current reaches a threshold, which results in short deceleration distances. Furthermore, closed-loop piezo actuation usually increases the response time. These problems tend to increase the ion current overshoot and affect imaging speed and quality. A fuzzy control system was developed to solve these problems via ion current deviation and deviation rate. This lengthens the deceleration distance to enable a high-speed approach toward the sample and smooth deceleration. Open-loop control of the piezo actuator is also used to increase sensitivity. To compensate for the nonlinearity of the actuator, a multi-section fuzzy logic strategy was used to maintain performance in all sections. Glass and poly(dimethylsiloxane) samples were used to demonstrate greater imaging speed and stability of the fuzzy controller relative to those of conventional controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.