Abstract
Brain tissue segmentation is an important component of the clinical diagnosis of brain diseases using multi-modal magnetic resonance imaging (MR). Brain tissue segmentation has been developed by many unsupervised methods in the literature. The most commonly used unsupervised methods are K-Means, Expectation-Maximization, and Fuzzy Clustering. Fuzzy clustering methods offer considerable benefits compared with the aforementioned methods as they are capable of handling brain images that are complex, largely uncertain, and imprecise. However, this approach suffers from the intrinsic noise and intensity inhomogeneity (IIH) in the data resulting from the acquisition process. To resolve these issues, we propose a fuzzy consensus clustering algorithm that defines a membership function resulting from a voting schema to cluster the pixels. In particular, we first pre-process the MRI data and employ several segmentation techniques based on traditional fuzzy sets and intuitionistic sets. Then, we adopted a voting schema to fuse the results of the applied clustering methods. Finally, to evaluate the proposed method, we used the well-known performance measures (boundary measure, overlap measure, and volume measure) on two publicly available datasets (OASIS and IBSR18). The experimental results show the superior performance of the proposed method in comparison with the recent state of the art. The performance of the proposed method is also presented using a real-world Autism Spectrum Disorder Detection problem with better accuracy compared to other existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.