Abstract
An improved Fuzzy C-Means (FCM) algorithm, which is called Reliability-based Spatial context Fuzzy C-Means (RSFCM), is proposed for image segmentation in this paper. Aiming to improve the robustness and accuracy of the clustering algorithm, RSFCM integrates neighborhood correlation model with the reliability measurement to describe the spatial relationship of the target. It can make up for the shortcomings of the known FCM algorithm which is sensitive to noise. Furthermore, RSFCM algorithm preserves details of the image by balancing the insensitivity of noise and the reduction of edge blur using a new fuzzy measure indicator. Experimental data consisting of a synthetic image, a brain Magnetic Resonance (MR) image, a remote sensing image, and a traffic sign image are used to test the algorithm’s performance. Compared with the traditional fuzzy C-means algorithm, RSFCM algorithm can effectively reduce noise interference, and has better robustness. In comparison with state-of-the-art fuzzy C-means algorithm, RSFCM algorithm could improve pixel separability, suppress heterogeneity of intra-class objects effectively, and it is more suitable for image segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.