Abstract

Data clustering based on regression relationship is able to improve the validity and reliability of the engineering data mining results. Surrogate models are widely used to evaluate the regression relationship in the process of data clustering, but there is no single surrogate model that always performs the best for all the regression relationships. To solve this issue, a fuzzy clustering algorithm based on hybrid surrogate model is proposed in this work. The proposed algorithm is based on the framework of fuzzy c-means algorithm, in which the differences between the clusters are evaluated by the regression relationship instead of Euclidean distance. Several surrogate models are simultaneously utilized to evaluate the regression relationship through a weighting scheme. The clustering objective function is designed based on the prediction errors of multiple surrogate models, and an alternating optimization method is proposed to minimize it to obtain the memberships of data and the weights of surrogate models. The synthetic datasets are used to test single surrogate model-based fuzzy clustering algorithms to choose the surrogate models used in the proposed algorithm. It is found that support vector regression-based and response surface-based fuzzy clustering algorithms show competitive clustering performance, so support vector regression and response surface are used to construct the hybrid surrogate model in the proposed algorithm. The experimental results of synthetic datasets and engineering datasets show that the proposed algorithm can provide more competitive clustering performance compared with single surrogate model-based fuzzy clustering algorithms for the datasets with regression relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.