Abstract

In this paper, a novel algorithm is developed to achieve efficient and smooth navigation for a differential drive mobile robot in unknown environments. The algorithm takes advantage of the essential characteristics of a differential drive robot and combines fuzzy logic with the ideas of Braitenberg vehicles. We have also proposed and tested a new technique for tuning a membership function referred to as NEAR, representing the closeness of the robot to an obstacle. The tuning scheme is obtained based on the distribution directives of the range sensors on the robot. The resulting navigation algorithm has been implemented on a real mobile robot and tested in various environments. Some problems in the implemented algorithm are identified and effective solutions are proposed. Experimental results are presented which demonstrate the effectiveness and improved performance of the resulting Fuzzy-Braitenberg navigation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.