Abstract

The problem of redundancy resolution and motion coordination between the vehicle and the manipulator in underwater vehicle-manipulator systems (UVMSs) is addressed in this paper. UVMSs usually possess more degree of freedom than those required to perform end-effector tasks; therefore, they are redundant system and kinematic control techniques can be applied aimed at achieving additional control objectives besides tracking of the end-effector trajectory. In this paper, a task-priority inverse kinematics approach to redundancy resolution is merged with a fuzzy technique to manage the vehicle-arm coordination. The fuzzy technique is used both to distribute the motion between vehicle and manipulator and to handle multiple secondary tasks. A numerical case study is developed to demonstrate effectiveness of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.