Abstract
Face recognition addresses identification, verification, and authentication in biometric-based security systems. This work enhances the contrast and edges in face images and recognizes the face using contourlet transform and fuzzy rules. Contourlet transformed image provides multiscale and directional information. The transformed image is divided into low-pass image (low-frequency image) and band-pass image (high-frequency image). The low-pass image is enhanced using fuzzy-based histogram specification since it deals with contrast. Band-pass image contains detailed information about the edges of the image and are enhanced using fuzzy rules and morphological gradient operators. The proposed system achieves the accuracy rate of 99.81% and 99.35% on Yale-B and JAFEE dataset, respectively, which is better than the existing curvelet and wavelet transform-based recognition. The incorporation of fuzzy rules enhances the mean intensity value of the edges to 34.19, which is better than Canny, Sobel, Prewitt, Robert and Laplacian edge detection techniques. Finally Discriminant Correlation Analysis (DCA) feature level fusion is applied to fuse enhanced edge intensities and histogram features for Support Vector Machine (SVM) classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.