Abstract
One of the difficulties encountered in the application of reinforcement learning methods to real-world problems is their limited ability to cope with large-scale or continuous spaces. In order to solve the curse of the dimensionality problem, resulting from making continuous state or action spaces discrete, a new fuzzy Actor–Critic reinforcement learning network (FACRLN) based on a fuzzy radial basis function (FRBF) neural network is proposed. The architecture of FACRLN is realized by a four-layer FRBF neural network that is used to approximate both the action value function of the Actor and the state value function of the Critic simultaneously. The Actor and the Critic networks share the input, rule and normalized layers of the FRBF network, which can reduce the demands for storage space from the learning system and avoid repeated computations for the outputs of the rule units. Moreover, the FRBF network is able to adjust its structure and parameters in an adaptive way with a novel self-organizing approach according to the complexity of the task and the progress in learning, which ensures an economic size of the network. Experimental studies concerning a cart–pole balancing control illustrate the performance and applicability of the proposed FACRLN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.