Abstract

This study presents a novel approach to address the autonomous stable tracking issue in electro-optical theodolite operating in closed-loop mode. The proposed methodology includes a multi-sensor adaptive weighted fusion algorithm and a fusion tracking algorithm based on a three-state transition model. A refined recursive formula for error covariance estimation is developed by integrating attenuation factors and least squares extrapolation. This formula is employed to formulate a multi-sensor weighted fusion algorithm that utilizes error covariance estimation. By assigning weighted coefficients to calculate the residual of the newly introduced error term and defining the sensor's unique states based on these coefficients, a fusion tracking algorithm grounded on the three-state transition model is introduced. In cases of interference or sensor failure, the algorithm either computes the weighted fusion value of the multi-sensor measurement or triggers autonomous sensor switching to ensure the autonomous and stable measurement of the theodolite. Experimental results indicate that when a specific sensor is affected by interference or the off-target amount cannot be extracted, the algorithm can swiftly switch to an alternative sensor. This capability facilitates the precise and consistent generation of data, thereby ensuring the stable operation of the tracking system. Furthermore, the algorithm demonstrates robustness across various measurement scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.