Abstract

ABSTRACT A fusion-based framework, in which a particle filter Markov chain Monte Carlo (PFMCMC) data assimilation method was coupled with the hydrological Sacramento Soil Moisture Accounting Model (SAC-SMA), was developed to improve the model’s capacity to predict one-day-ahead runoff. A case study was applied where mean daily precipitation from multiple sources served as forcing data in the data assimilation procedure, while ground station and multiple bias-corrected satellite-based precipitation datasets served as precipitation input datasets. The model training period used six years (2002–2007) of data to determine optimal weights through a genetic algorithm optimization model, while two years (2008–2009) were used to test the model. The proposed framework, applied to a real case study, improved SAC-SMA runoff prediction accuracy by incorporating precipitation datasets from multiple sources in the data assimilation procedure. On average, the PFMCMC-based data assimilation procedure led to a 13.7% improvement in SAC-SMA model performance metrics (NSE, MAB, RMSE, RMSRE, RMRE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.