Abstract

When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks. First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and discrete wavelet transform (DWT). The extracted features were fused for a further feature elimination. Then, the features were selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA), and extreme trees (ET). The selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve subjects' EEG data from Inner Mongolia University of Technology (IMUT data), the 2nd BCI competition in 2003, and the 4th BCI competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. The results show that the classification accuracy using the multidimensional fused feature extraction (AR + CSP + DWT) is 3%–20% higher than those using the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model method, outperforms RFE and PCA by 1%–9% in term of classification accuracies, when these three methods were applied to the procedure of feature extraction, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.