Abstract
The capacitive pressure sensor based on thin film elastic deflection and a parallel plate capacitor uses a non-conductive elastic annular thin film centrally connected to a conductive, rigid, flat, concentric-circular thin plate as a pressure sensing unit. On application of pressure, the non-conductive thin film deflects elastically, which in turn moves the conductive thin plate (as a movable upper electrode plate of the parallel plate capacitor) towards the lower electrode plate, resulting in a change in the capacitance of the capacitor. Therefore, the applied pressure can be determined by measuring the capacitance change, based on the closed-form solution for the elastic behavior of the annular thin film under pressure. Such capacitive pressure sensors are more suitable for large-sized sensors such as those used for building-facade wind pressure measurements, etc. In this paper, a further theoretical study of such capacitive pressure sensors is presented. The newly presented, more refined closed-form solution can greatly reduce the output pressure error under the same input capacitance, in comparison with the previously presented closed-form solution. A numerical example of how to use the resulting closed-form solution to numerically calibrate input–output characteristics is given for the first time. The variation trend of pressure operation ranges and input–output characteristics with important parametric variations, which can be used for guiding the design of such capacitive pressure sensors, is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.