Abstract

In our previous work, the choice between two popular hedging strategies was studied under the assumption that the hedge position of the underlying portfolio follows a discrete-time Markov chain with boundary conditions. This paper aims to investigate the same problem for the continuous case. We first assume that the underlying hedge position follows an arbitrary continuous-time Markov process; we give the general formulas for long-run cost per unit time under two cost structures: (1) a fixed transaction cost (2) a non-fixed transaction cost. Then we consider the case where the underlying hedge position follows a Brownian motion with drift; we show that (i) re-balancing the hedge position to the initial position is always more cost-efficient than re-balancing it to the boundary for a fixed transaction cost; (ii) when the cost function satisfies certain conditions, re-balancing the hedge position to the initial position is more cost-efficient than re-balancing it to the boundary for a non-fixed transaction cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.