Abstract
This article is concerned with the prediction problems in linear mixed models (LMM). Both biased predictors and restricted predictors are introduced. It was found that the mean square error matrix (MSEM) of a predictor strongly depends on the MSEM of corresponding estimator of the fixed effects and precise formulas are obtained. As an application, we propose three new predictors to improve the best linear unbiased predictor (BLUP). The performance of the new predictors can be examined easily with the help of vast literature on the linear regression models (LM). We also illustrate our findings with a Monte Carlo simulation and a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.