Abstract

The active site of factor Xa, labelled with dansylglutamylglycylarginine (DnsEGR) is sensitive to association with Ca2+, factor Va and phospholipids. When bound to factor Va, DnsEGR-factor-Xa does not change the composition of the binding site of factor Va, as shown by fluorescence energy-transfer experiments between the Trp residues of factor Va and pyrene-labelled phospholipids. Prothrombin was cleaved by alpha-chymotrypsin into two parts: N-terminal residues 1-41 (peptide 1-41) containing the gamma-carboxyglutamic acid residues (Gla), and des-(1-41)-prothrombin; their membrane association was investigated. Peptide 1-41 contains the aromatic residues Tyr and Trp in positions 24 and 41, respectively, and is suitable for fluorescence spectroscopy. The absence of fluorescence energy transfer between these residues suggests that they are more than 2.8 nm apart. Binding of Ca2+ and of phospholipids involves essentially the Tyr residue, while the C-terminal characteristics of the Trp residue remain unchanged. The conformational change which takes place on binding does not shorten the distance between Tyr and Trp beyond 2.8 nm. Our conclusion is that peptide 1-41 has an extended conformation. This result is compatible with the disordered character of the Gla region found in the crystalline structure of fragment 1 of prothrombin. Ca2+ induces a greater fluorescence energy transfer between prothrombin and membranes labelled with pyrene but has no influence on the binding of des-(1-41)-prothrombin. Moreover, the binding curves of des(1-41)-prothrombin are similar to those of prothrombin in the absence of Ca2+. It is concluded that the Ca2+-independent association of prothrombin with membranes involves essentially that part of the prothrombin molecule deleted in the Gla region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call